
Current Sensor

Model Number:

AS1V 30 H05

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuits.

Features

- Open loop current sensor using the Hall Effect.
- ♦ Galvanic separation between primary and secondary.
- ♦ Insulating plastic case recognized according to UL 94-V0.
- ♦ Supply voltage:+5V
- ♦ No insertion loss.
- ♦ Small size
- ♦ Standards:

■ EN50178: 1997 ■ IEC 61010-1: 2000 ■ UL 508: 2010

Applications

- ♦ AC variable speed
- Uninterruptible Power Supplies (UPS).
- ♦ Static converters for DC motor drives.
- ♦ Switch Mode Power Supplies (SMPS).
- Power supplies for welding applications.
- ♦ Battery management.

Safety

This sensor must be used according to IEC61010-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements inaccordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additionalshield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	V c	V	+ 6 V
Primary conductor temperature	<i>T</i> _B	$^{\circ}$ C	105
ESD rating, Human Body Model (HBM)	V _{ESD}	kV	4

Stress above these ratings may cause permanent damage.

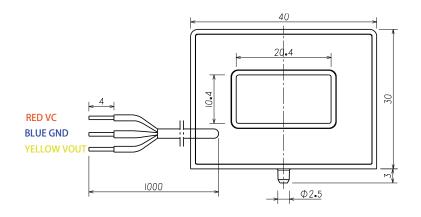
Environmental and mechanical characteristics

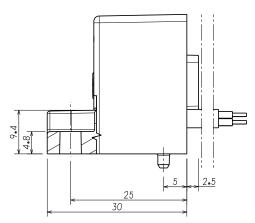
Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T _A	$^{\circ}$	-40		105	
Ambient storage temperature	<i>T</i> _S	$^{\circ}$	-40		125	
Mass	m	g		60		
Standards	EN 50178, IEC 61010-1, UL 508C					

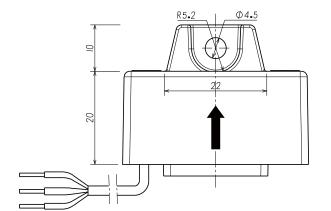
Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @ 50Hz,1min	$V_{ m d}$	kV	3.6	
Impulse withstand voltage1.2/50µs	₩	kV	6.6	
Clearance (pri sec.)	d cı	mm	6.3	
Creepage distance (pri sec.)	d c _p	mm	7.3	
Plastic case	-	ı	UL94-V0	
Comparative tracking index	СТІ	PLC	3	
Application example	1	1	300V CAT III PD2	Reinforced insulation,according to EN 50178, EN 61010-1.
Application example	-	-	600V CAT Ⅲ PD2	Basic insulation,according to EN 50178, EN 61010-1.

Exposure to absolute maximum ratings for extended periods may degrade reliability.


Electrical data


With T_A = 25°C, V_C = +5V, R_L = 10kΩ,unless otherwise noted.


Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	/ _{PN}	Α	-30		30	AS1V 30 H05
Supply voltage	V c	V	4.75	5.00	5.25	@ 5%
Current consumption	<i>l</i> c	mA		12		
Output voltage(Analog)@ /PN	V ou⊤	٧	V_{OUT} =2.5+ $G_{\text{th}} \times I_{\text{P}}$			@ V _c
Offset voltage	V o∪T	٧	2.485	2.5	<i>2.5</i> 15	@ / _P =0A
Load resistance	R_{L}	kΩ	10			
Electrical offset voltage	V₀E	mV	-10		10	
Temperature coefficient of V _{OE}	<i>TCV</i> _{0E}	mV	-10	±6	10	@ -40℃~105℃
Hysteresis offset voltage@ /p=0 after 1 × / _{PN}	V ом	mV	-10		10	
Theoretical sensitivity	\mathcal{G}_{th}	mV/A		33.33		
Sensitivity error	$\mathcal{E}_{ extsf{G}}$	%	-0.5		0.5	Exclusive of $V_{\rm OE}$
Temperature of G	TCG	%	-0.5		0.5	@ -40°C~105°C
Linearity error 0I _{PN}	\mathcal{E}_{L}	% of IPN	-0.5		0.5	Exclusive of V _{OE}
Accuracy@ I _{PN}	Χ	% of In	-1		1	Exclusive of V _{OE}
Response time@ 90% of I _{PN}	<i>t</i> r	μs		3	5	
Frequency bandwidth(-3dB)	BW	kHz	50			

Dimensions (in mm. 1 mm = 0.0394 inch)

Connection:

RED Vc BLUE GND YELLOW Vout

Mechanical characteristics

♦ General tolerance

Connection of secondary

RVVP 3×0.3mm² Shielded wires

±0.5 mm

♦ Output line length

♦ Primary hole

1000 ±10mm 20.5mm×10.5mm

♦ Sensor

1рс Ф4.5 mm through hole 1рс M4 metal screws Remarks

- \diamond $V_{\rm OUT}$ and $I_{\rm P}$ are in the same direction, when $I_{\rm P}$ flows in the direction f arrow.
- ♦ Temperature of the primary conductor should not exceed 105°C.
- Dynamic performances (di/dt and response time)are best with asingle bar completely filling the primary hole.

This is a standard model. For different applications

(measurement, secondary connections...), please contact CHIPSENSE.

Recommended fastening torque 0.9 N•m (±10%)